105 research outputs found

    Modified Le Fort I Osteotomy and Genioplasty for Management of Severe Dentofacial Deformity in β-Thalassaemia Major: Case report and review of the literature

    Get PDF
    β-thalassaemia major is an autosomal recessive form of haemoglobinopathy that is characterised by complete lack of production of the β-chains resulting in multiple complications that include severe anaemia, failure to thrive and skeletal abnormalities. Facial deformities induced by β-thalassaemia major are rare and are very challenging to treat from a surgical point of view. We report a 33-year-old female patient with β-thalassaemia major who presented to the Dental & Maxillofacial Surgery Department, Sultan Qaboos University Hospital, Muscat, Oman, in 2017 with gross dentofacial skeletal deformity contributing to her psychosocial issues. The facial deformity was corrected surgically by excision of the enlarged maxilla, modified Le Fort I osteotomy and advancement genioplasty. This case highlights the pre-operative preparation, surgical management, encountered complications and treatment outcome within 24 months of follow-up.Keywords: Beta-Thalassaemia; Thalassaemia Major; Cooley's Anemia; Le Fort Osteotomy; Genioplasty; Dentofacial Deformities; Case Report; Oman

    Investigating the Association between Organizational Differences and the Implementation of ISO 9001:2000

    Get PDF
    Abstract This paper reports on the results of a study investigating the issue of whether aspects relating to the implementation of ISO 9001:2000 quality management standard differ according to organization size or sector type. Data required for this study were collected from 42 randomly selected organizations of different size and sector type operating in the Sultanate of Oman. The results show that there is no strong evidence to suggest that the motives for implementation, the process and cost of achieving certification, the perceived benefits, and the shortcomings differ significantly according to organization size or sector type. The main outcome of this study is that the issue of organization size or sector type should not be a factor in deciding upon certification

    Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes Mellitus (T2DM) prevalence has significantly increased worldwide in recent years due to population age, obesity, and modern sedentary lifestyles. The projections estimate that 439 million people will be diabetic in 2030. T2DM is characterized by an impaired ß-pancreatic cell function and insulin secretion, hyperglycemia and insulin resistance, and recently the epigenetic regulation of ß-pancreatic cells differentiation has been underlined as being involved. It is currently known that several bioactive molecules, widely abundant in plants used as food or infusions, have a key role in histone modification and DNA methylation, and constituted potential epidrugs candidates against T2DM. In this sense, in this review the epigenetic mechanisms involved in T2DM and protein targets are reviewed, with special focus in studies addressing the potential use of phytochemicals as epidrugs that prevent and/or control T2DM in vivo and in vitro. As main findings, and although some controversial results have been found, bioactive molecules with epigenetic regulatory function, appear to be a potential replacement/complementary therapy of pharmacological hypoglycemic drugs, with minimal side effects. Indeed, natural epidrugs have shown to prevent or delay the T2DM development and the morbidity associated to dysfunction of blood vessels, eyes and kidneys due to sustained hyperglycemia in T2DM patients.This work was supported by CONICYT PIA/APOYO CCTE AFB170007. NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/ 28076/2017)

    Projected SO(5) Hamiltonian for Cuprates and Its Applications

    Full text link
    The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and superconducting fluctuations of underdoped cuprates in terms of four bosons moving on a coarse grained lattice. A simple mean field approximation can explain some key feautures of the experimental phase diagram: (i) The Mott transition between antiferromagnet and superconductor, (ii) The increase of T_c and superfluid stiffness with hole concentration x and (iii) The increase of antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase. We apply this theory to explain the ``two gaps'' problem found in underdoped cuprate Superconductor-Normal- Superconductor junctions. In particular we explain the sharp subgap Andreev peaks of the differential resistance, as signatures of the antiferromagnetic resonance (the magnon mass gap). A critical test of this theory is proposed. The tunneling charge, as measured by shot noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure

    Proceedings of the Salford Postgraduate Annual Research Conference (SPARC) 2011

    Get PDF
    These proceedings bring together a selection of papers from the 2011 Salford Postgraduate Annual Research Conference(SPARC). It includes papers from PhD students in the arts and social sciences, business, computing, science and engineering, education, environment, built environment and health sciences. Contributions from Salford researchers are published here alongside papers from students at the Universities of Anglia Ruskin, Birmingham City, Chester,De Montfort, Exeter, Leeds, Liverpool, Liverpool John Moores and Manchester

    Microbiome Variation Across Populations of Desert Halophyte Zygophyllum qatarensis

    Get PDF
    Microbial symbionts play a significant role in plant health and stress tolerance. However, few studies exist that address rare species of core-microbiome function during abiotic stress. In the current study, we compared the microbiome composition of succulent dwarf shrub halophyte Zygophyllum qatarensis Hadidi across desert populations. The results showed that rhizospheric and endosphere microbiome greatly varied due to soil texture (sandy and gravel). No specific bacterial amplicon sequence variants were observed in the core-microbiome of bulk soil and rhizosphere, however, bacterial genus Alcaligenes and fungal genus Acidea were abundantly distributed across root and shoot endospheres. We also analyzed major nutrients such as silicon (Si), magnesium, and calcium across different soil textures and Z. qatarensis populations. The results showed that the rhizosphere and root parts had significantly higher Si content than the bulk soil and shoot parts. The microbiome variation can be attributed to markedly higher Si – suggesting that selective microbes are contributing to the translocation of soluble Si to root. In conclusion, low core-microbiome species abundance might be due to the harsh growing conditions in the desert – making Z. qatarensis highly selective to associate with microbial communities. Utilizing rare microbial players from plant microbiomes may be vital for increasing crop stress tolerance and productivity during stresses

    Microbiome Variation Across Populations of Desert Halophyte \u3ci\u3eZygophyllum qatarensis\u3c/i\u3e

    Get PDF
    Microbial symbionts play a significant role in plant health and stress tolerance. However, few studies exist that address rare species of core-microbiome function during abiotic stress. In the current study, we compared the microbiome composition of succulent dwarf shrub halophyte Zygophyllum qatarensis Hadidi across desert populations. The results showed that rhizospheric and endosphere microbiome greatly varied due to soil texture (sandy and gravel). No specific bacterial amplicon sequence variants were observed in the core-microbiome of bulk soil and rhizosphere, however, bacterial genus Alcaligenes and fungal genus Acidea were abundantly distributed across root and shoot endospheres. We also analyzed major nutrients such as silicon (Si), magnesium, and calcium across different soil textures and Z. qatarensis populations. The results showed that the rhizosphere and root parts had significantly higher Si content than the bulk soil and shoot parts. The microbiome variation can be attributed to markedly higher Si – suggesting that selective microbes are contributing to the translocation of soluble Si to root. In conclusion, low core-microbiome species abundance might be due to the harsh growing conditions in the desert – making Z. qatarensis highly selective to associate with microbial communities. Utilizing rare microbial players from plant microbiomes may be vital for increasing crop stress tolerance and productivity during stresses

    Sero-Survey of Equine Infectious Anemia in the Sultanate of Oman during 2007-2009

    Get PDF
    Equine infectious anemia (EIA) is a fatal and relapsing infectious disease of equines caused by the lentivirus of Retroviridae family which occurs world-wide. It tends to become an inapparent infection if death does not result from the acute clinical attack. The virus persists in infected animals for life and can be detected by serological tests like enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion (AGID) tests. Keeping in view the importance of EIA, a sero-survey and passive surveillance was designed to establish the status of EIA in Oman. For the current study, ELISA was carried out on 331 random horse serum samples collected from all over Oman and 262 serum samples submitted from race horses. Four (0.67%) out of total 593 serum samples were found positive on ELISA. These samples were further tested by agar gel immunodiffusion (AGID) test for the confirmation and were found negative. Based on the analysis of the samples, it can be assumed that the horse population in the Sultanate was free of the disease during the study period (2007-2009)

    The Usefulness of Nap Sleep Recording During Routine Electroencephalography: An Audit Study

    Get PDF
    Objectives: A measure to increase the electroencephalogram (EEG) outcome includes a short period of nap sleep during a routine standard EEG with the aim of increasing its sensitivity to interictal abnormalities or provoking seizures. As part of an ongoing auditing of our EEG data, we aimed to investigate the contribution of nap sleep during routine outpatient department based EEGs requested for a variety of reasons. Methods: EEG data at the Department of Clinical Physiology at Sultan Qaboos University Hospital, Oman, from July 2006 to December 2007 and from January 2009 to December 2010 (total 42 months) were reviewed. The EEGs were for patients older than 13-years referred for possible epilepsy, blackouts, headache, head trauma, and other non-specified attacks. The recording period was between 20 to 40 minutes. Abnormalities were identified during waking and nap sleep periods. Results: A total of 2 547 EEGs were reviewed and 744 were abnormal (29.2%). Of those abnormal EEGs, nap sleep was obtained in 258 (34.7%) EEGs, and 39 (15.1%) showed abnormalities during nap sleep. Nineteen out of the 39 (48.7%) EEGs were abnormal during awake and nap sleep; and 20 (51.3%) were abnormal during nap sleep, which represented only 2.7% of the total abnormal EEGs (n = 744). Conclusions: The contribution of the short nap sleep to the pickup rate of interictal abnormalities in EEG was minimal. We recommend the EEG service to include one cycle of spontaneous sleep EEG directed at patients with a history suggestive of epilepsy if their awake EEGs are normal

    Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review

    Get PDF
    Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: "Lasia spinosa,"then combined with "ethnopharmacological use,""phytochemistry,"and "pharmacological activity."This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.This work was supported by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) PIA/APOYO CCTE AFB170007. N.C.-M. acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)
    corecore